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Glycemic Response to Black Beans and Chickpeas as Part of a Rice Meal:
A Randomized Cross-Over Trial

Abstract
Legumes, such as black beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.), have a low glycemic
index, and may reduce the glycemic load of meals in which they are included. Although the low glycemic
response of beans consumed alone has been documented, few studies have examined the glycemic response to
traditional food combinations such as black beans and rice or chickpeas and rice. This randomized cross-over
study examined the glycemic and insulinemic impact of 50 grams of available carbohydrate from three test
meals: plain white rice (control), black beans with rice, and chickpeas with rice among healthy adult women
(n = 12, 18–65 years). Treatments were consumed on different mornings, a minimum of 7 days apart. Blood
samples were collected at time 0 (fasting), and at 30, 60, 90, and 120 min postprandial, and were subsequently
analyzed for glucose and insulin concentrations. Glucose response based on the incremental area under the
curve showed a significant difference by treatment (p = 0.027). Changes in blood glucose concentrations were
significantly different for the black bean meal and the chickpea meal in comparison to rice alone at 60 min (p
= 0.026 and p = 0.024), 90 min (p = 0.001 and p = 0.012) and 120 min post prandial (p = 0.024; black bean
meal). Findings indicate that combinations of black beans and chickpeas with white rice improve glycemic
response, providing evidence that has promising implications for dietary guidance to reduce postprandial
glucose and related health risks through traditional food patterns
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Abstract: Legumes, such as black beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.),
have a low glycemic index, and may reduce the glycemic load of meals in which they are included.
Although the low glycemic response of beans consumed alone has been documented, few studies
have examined the glycemic response to traditional food combinations such as black beans and rice or
chickpeas and rice. This randomized cross-over study examined the glycemic and insulinemic impact
of 50 grams of available carbohydrate from three test meals: plain white rice (control), black beans
with rice, and chickpeas with rice among healthy adult women (n = 12, 18–65 years). Treatments
were consumed on different mornings, a minimum of 7 days apart. Blood samples were collected
at time 0 (fasting), and at 30, 60, 90, and 120 min postprandial, and were subsequently analyzed for
glucose and insulin concentrations. Glucose response based on the incremental area under the curve
showed a significant difference by treatment (p = 0.027). Changes in blood glucose concentrations
were significantly different for the black bean meal and the chickpea meal in comparison to rice
alone at 60 min (p = 0.026 and p = 0.024), 90 min (p = 0.001 and p = 0.012) and 120 min post prandial
(p = 0.024; black bean meal). Findings indicate that combinations of black beans and chickpeas with
white rice improve glycemic response, providing evidence that has promising implications for dietary
guidance to reduce postprandial glucose and related health risks through traditional food patterns.

Keywords: legumes; pulses; beans; glycemic response; blood glucose; post-prandial; insulin;
insulin response

1. Introduction

Legumes and other pulses (dried peas, lentils) have been a staple food for millennia in a majority
of cultures, and often define a region’s cuisine [1]. Two of the most frequently consumed dry grain
pulses are black beans (Phaseolus vulgaris L.) and chickpeas or garbanzo beans (Cicer arietinum L.).
Black beans and chickpeas are commonly consumed in many regions around the world, including
India, Latin America, and the Middle East [1]. These legumes, and others, are frequently eaten as part
of a meal with high carbohydrate foods such as rice, tortillas, or potatoes. Black beans and chickpeas
with rice are part of classic cultural dishes like feijoada in Brazil and chole biryani in India [1].

Legume consumption is connected to a vast number of health benefits, including increased satiety,
lengthened longevity, improved body weight, and the prevention and treatment of chronic conditions
like metabolic syndrome, type 2 diabetes, and coronary heart disease (CHD) [2–8]. Legumes are high
fiber, low glycemic foods that contain a considerable amount of soluble fiber and resistant starch, and a
higher ratio of slowly digestible to readily digestible starch than other carbohydrate foods [9]. Soluble
fiber contributes to an increase in self-reported satiety and a reduced rate of both gastric emptying

Nutrients 2017, 9, 1095; doi:10.3390/nu9101095 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0003-3924-2560
https://orcid.org/0000-0001-6806-1158
http://dx.doi.org/10.3390/nu9101095
http://www.mdpi.com/journal/nutrients


www.manaraa.com

Nutrients 2017, 9, 1095 2 of 12

and nutrient access by alimentary digestive enzymes. Legume-derived resistant starch and slowly
digestible starch are also associated with improved glycemic response and lower postprandial glucose
concentrations, which can improve glycemic control among individuals with insulin resistance and
type 2 diabetes [10,11]. Legumes are also a source of plant protein and anti-nutrient factors such
as polyphenols and phytonutrients. As with other dietary sources of protein, legumes promote the
release of satiety hormones such as cholecystokinin and glucagon-like protein 1, hormones that may
be responsible for the 31% increase in self-reported satiety observed when pulses were compared to
control treatments [12].

Although legumes remain important and essential foods, shifts to a more Western diet pattern
are occurring in many countries, regardless of migration [13]. Urbanization and easier access to
inexpensive processed foods have altered the nutrition environment, even in rural areas [13,14].
For immigrants who move to a developed country, dietary acculturation may become a necessity
due to the lack of familiar foods. Regardless of the source of dietary change—migration or nutrition
transition—the shift to a Westernized diet is linked to an increased risk of diabetes, cardiovascular
disease, some types of cancers, and related conditions such as metabolic syndrome and obesity [14].
The development of type 2 diabetes has clear connections with diet and lifestyle [13]. Since the
1980s, global estimates of diabetes indicate that rates have increased by 60% among women, and by
two-fold among men [15]. Dietary patterns that promote elevated postprandial glucose excursions can
damage tissues, reduce vascular endothelial function, and, over time, lead to degeneration of normal
physiological functioning of the pancreas. Controlling or limiting elevated postprandial glucose is
beneficial for non-diabetic individuals as well as those who have advanced to a diseased state [16].

The fiscal impact of these conditions, which are so intertwined with diet and lifestyle, is of great
concern. US healthcare and economic costs connected with type 2 diabetes treatment alone were
estimated to be $245 billion in 2012, up from $174 billion in 2007 [17]. Estimates for CHD costs on
a global level may reach as high as $20 trillion over the next two decades [18]. Despite educational
campaigns and pharmaceutical advances with regard to the treatment of conditions characterized by
aberrant blood glucose and insulin homeostasis through diet and medications, the incidence of type
2 diabetes and CHD continues to rise, and remain among the top ten causes of death in the US and
internationally [15,19].

Retention or promotion of traditional foods with nutritional benefits such as legumes, is a logical
strategy to improve diets in the face of changing food environments and promote healthier eating
patterns [13,20]. Legumes have superior nutrient profiles in comparison to other common dietary
staples, such as rice and corn [21]. For example, black beans and chickpeas contain more than 7 g of
protein, while long-grain white rice and kernel corn contain only 2 g per 1/2 cup serving of cooked
food. Folate concentrations are also higher in legumes (black beans 128 µg; chickpeas 141 µg; rice 2 µg;
corn 17 µg), as is iron (black beans 1.81 mg; chickpeas 2.37 mg; rice 0.16 mg; corn 0.34 mg) [22].

Given the substantial evidence for legume-related health benefits, the US Dietary Guidelines for
Americans (DGA) first recommended their inclusion in the 2005 DGA [23]. The 2015 DGA recommends
1 to 1.5 cups of legumes be consumed per week for a 2000 kcal diet. The DGA includes these plant
foods among the vegetable and protein food categories of MyPlate [23]. Despite this guidance, most
Americans fail to reach the DGA legume recommendation [24]. The current US Western diet pattern
often lacks a legume-based staple food, instead featuring meat as a primary protein source [1]. Globally,
annual per capita consumption patterns range from 34 kg in Burundi, 18 kg in Nicaragua, 11 kg in
India, to only 4 kg in the United States (US) [21]. US per capita consumption masks the fact that legume
consumption is highest among ethnic groups and minorities [24]. Legume intakes may decrease as
individuals acculturate to a Western diet in the US [25,26], or internationally as individuals experience
nutrition transition changes in their country of origin [27]. In the US, rice consumption is about 9.5 kg
per capita. Like legumes, rice is consumed in greater quantities among multicultural individuals [28].
While some Asian countries like Cambodia and Vietnam report rice consumption per capita of over
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110 kg, it is also high in the Caribbean Region at 70 kg, and in South America at 45 kg [29]. In most of
these settings the rice is paired with a legume [1].

Although the low glycemic response of beans alone has been documented [30,31], evidence for
the metabolic impact of traditional food combinations such as black beans and rice, or chickpeas and
rice has been limited and, among existing trials, results have been mixed [4,32–40]. Investigating
the glycemic and insulinemic impact of black bean and chickpea consumption in a traditional meal
setting can support legume retention in traditional diets and encourage dietary recommendations by
health providers to increase consumption of these culturally valuable plant foods. As risk of metabolic
syndrome and type 2 diabetes increases among ethnic minorities and the overall US population,
effective high-fiber, high-protein plant foods like legumes may lower disease burden and promote
health among ethnic minorities and the overall US population [20].

Accordingly, the objective of this study was to examine the glycemic and insulinemic response
to two dry bean varieties (black beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.)),
in combination with white rice as a culturally appropriate complementary food, in comparison to a
white rice control meal among adult women. We hypothesized that the inclusion of whole black beans
or chickpeas with white rice would reduce the glucose and insulin response when compared to the
white rice control.

2. Materials and Methods

2.1. Study Population

Adult women, aged 18–65 years, were recruited from the greater metropolitan Phoenix area to
participate in the 3 × 3 randomized cross-over trial. Exclusion criteria included physician diagnosis
of type 1 or type 2 diabetes, behaviors or health conditions known to influence glucose or insulin
concentrations (e.g., smoking, gastrointestinal conditions, BMI ≤ 19 or ≥ 35 kg/m2, weight changes
±5 kg within 6 months, current pregnancy or breastfeeding), or allergy to beans or latex. Participants
were also excluded if they were currently taking medications known to affect glucose or insulin
concentrations. Habitual consumption of medications not known to impact glucose or insulin
metabolism was permitted if the participant was on the current treatment dosage for >6 months
and dosage was not altered during the study period. The study protocol was approved by the
Bioscience Committee of the Institutional Review Board at Arizona State University (Human Subjects
Protocol Number 0712002492) and all participants provided written, informed consent. Twenty-one
individuals (19 women, 4 men) were screened for the study. Due to the potential for sex-related
confounding in metabolism and body size, and insufficient enrollment of men for adequate statistical
comparison, male participants were excluded from the study. Of the 19 eligible women, 6 declined to
participate and 13 were enrolled in the study. One participant completed one test day, but declined
to continue the study for personal reasons. Three women completed two test days and 9 women
completed all three test days.

2.2. Study Design

This randomized cross-over study included three treatments: (1) white rice (control); (2) black
beans and white rice; and (3) chickpeas and white rice. Test meals were consumed on different
mornings at least one week apart. Treatments were portioned by gram weight and contained equal
available carbohydrate content of 50 g. Black beans and chickpeas have similar carbohydrate content
per gram weight despite being different legume species [22].

During the three days prior to testing, participants were asked to consume one white, plain
bagel (56 g carbohydrate) each day to ensure adequate carbohydrate consumption minimize influence
of glycogen depletion on postprandial glucose. Participants selected a pre-testing evening meal
consisting of a commercially produced submarine sandwich, potato chips, and cookie consumed with
water. Participants were required to consume the same evening meal the night before each test day.
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Evening meal standardization was conducted to avoid confounding from the second meal effect [41].
After consuming the provided meal on the eve of testing, participants were required to fast and to
drink only plain water until they arrived at the study location 12 h later. Participants were also asked
to refrain from alcohol consumption and light, moderate, or heavy activity for 24 h prior to testing.

Upon arrival at the test site, participants were confirmed to be fasting and compliant with
study procedures. Participants were weighed in light clothing, without shoes, using a digital
scale (Seca Model 880; SECA, Hamburg, Germany). Height was assessed using a wall-mounted
stadiometer (SECA, Chino, CA, USA) on the first test day meeting. After fasting blood sample
collection, participants consumed one of the three test meal options within 5–10 min under researcher
supervision. Meal consumption duration was not significantly different between treatments.

Whole blood samples were collected at 30, 60, 90, and 120 min post-treatment by a trained
phlebotomist for determination of glucose and insulin concentrations. Plasma glucose concentrations
were assessed using the colorimetric glucose oxidase method (Sigma Diagnostics, St. Louis, MO, USA).
Insulin concentrations in serum were determined utilizing the Immulite 1000 (Diagnostic Products
Corporation, Los Angeles, CA, USA). Results for glucose and insulin are presented as net change
from fasting values. Fasting glucose concentrations were not significantly different between treatment
test days and values confirmed that participants were fasting. A portion of the first blood sample on
the first study test date was sent to an outside lab (Sonora Quest, Tempe, AZ, USA) for analysis of
hemoglobin, triglyceride, total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein
(HDL), and very-low-density lipoprotein (VLDL). Hemoglobin was assessed to evaluate the presence
or absence of iron deficiency anemia and lipid profiles were evaluated to provide information on risk
factors for metabolic syndrome and heart disease.

2.3. Test Meals

Participants received the three test meals in random order. Bean treatment meals were composed
of a 1/2 cup of plain black beans or chickpeas (Bush Brothers & Company, Knoxville, TN, USA) and
15 g of brine from the canned beans (added for flavor) along with 1/2 cup of plain steamed long
grain white rice (Great Value, Bentonville, AR, USA). The control meal contained 3/4 cup of the same
white rice. The mean glycemic index (GI) value of long grain rice was found to be 80 ± 3 across ten
studies and it is considered to be a high-GI food [31,42]. Nutrient composition of test meals is shown
in Table 1. Each meal provided 50 g of available carbohydrate, which was calculated as the difference
between the dietary fiber and total carbohydrate values presented on the manufacturer’s nutrition facts
label [43–45]. Fifty grams of carbohydrate is a standard quantity used to test glucose response among
persons with and without type 2 diabetes [46–48]. White rice was prepared in an electric automatic
rice cooker based on the manufacturer’s instructions (RC400; Black & Decker, Miami Lakes, FL, USA).
Dry rice weight and water volume were standardized to gram weights for preparation consistency.
Proportions of 945 g of bottled drinking water was added to 420 g of dry white rice and steamed for
~30 min in the rice cooker. The canned beans were drained, but not rinsed, and heated in a microwave
for 1 min at medium power. The test meal was prepared by weighing out the cooked rice, then adding
the appropriate weight of warmed beans, and 15 g of the drained can liquid for moisture. A digital
food scale was used for gram weight determination, and was tared after the addition of each food item
(Salter, Fairmont, MN, USA).



www.manaraa.com

Nutrients 2017, 9, 1095 5 of 12

Table 1. Nutrient composition of test meals.

Characteristic Rice Only Control Black Beans and White Rice Chickpeas and White Rice

Total weight (g) 180.0 248.5 248.5
Rice (g) 180.0 118.5 118.5

Beans (g) — 130.0 130.0
Energy (kcal) 232.0 263.0 258.0

Carbohydrate (g) 49.5 56.1 53.1
Available CHO (g) 49.5 48.6 47.6

Fiber (g) 0.7 7.5 5.5
Protein (g) 4.8 11.2 9.2

Fat (g) 0.5 0.8 2.3

2.4. Data and Statistical Analysis

Timepoint differences between fasting and post-treatment glucose and insulin concentrations
were determined (Figures 1 and 2) and incremental area under the curve (iAUC) calculations were
completed using the trapezoidal rule (Figures 3 and 4) [49]. The iAUC for blood glucose and insulin
were assessed between 0–60 and 0–120 min postprandial for all participants. Multivariate analysis
of variance (MANOVA) for repeated measures with time and diet as factors was used to evaluate
differences in glucose and insulin measures between the three meal treatments. Following a significant
MANOVA, paired t tests were used to identify differences between specific bean treatments and the
rice control. All continuous variable data are reported as mean ± standard error. SPSS Statistics
software version 24.0 (IBM Corporation, Somers, NY, USA) was used for statistical analyses. A priori
power analysis at 80% power with an effect size of 0.5 for MANOVA repeated measures between
factors indicated that a sample size of 12 individuals were required [50]. The level of significance was
p ≤ 0.05.
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Figure 1. Effect of bean interventions on change in plasma glucose concentrations from fasting. Points
denote mean glucose concentration at each data collection timepoint and error bars denote standard
error of means. Mean fasting glucose values were not significantly different between treatment groups
(91.68 (SEM 2.42), 89.54 (SEM 1.83), and 89.64 (SEM 5.70) mg/dL for white rice, black beans and white
rice, and chickpeas and white rice, respectively). Results of a post-hoc paired t-test indicated that the
glucose response curve was significantly different at 60 (p = 0.026), 90 (p = 0.001), and 120 (p = 0.024) for
black beans (n = 12), and at 60 (p = 0.024) and 90 (p = 0.012) for chickpeas (n = 9) compared to control
(rice alone). A trend was observed at the 120 min timepoint between chickpeas and rice and the white
rice control meal (p = 0.072).
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Figure 2. Effect of bean treatments on change in plasma insulin from fasting values. Points denote
mean insulin concentration at each data collection timepoint and error bars denote standard error of
means. Results of a post-hoc paired t-test indicated that the insulin response curve was significantly
different at 30 (p = 0.037) for black beans (n = 12), and at 30 (p = 0.026) for chickpeas (n = 9) compared
to the white rice control meal.

3. Results

3.1. Participant Characteristics

Descriptive statistics for the 12 participants at study entry are shown in Table 2. All participants
self-identified as Caucasian and two identified as having Hispanic ethnicity. Body weight and body
mass index (BMI) did not significantly differ between test days (data not shown). Mean BMI was
within the normal range. Two participants were classified as overweight. Mean lipid concentrations
were in the optimal ranges [51]. One participant displayed an elevated total cholesterol concentration
of 267 mg/dL. The participant’s HDL cholesterol was also high, indicating a total cholesterol/HDL
ratio of 4.0, which was considered acceptable by recommendations at the time of data collection [49].
None of the women were classified as anemic (hemoglobin <12 g/dL) [52].

Table 2. Descriptive characteristics of women at study entry (n = 12).

Characteristic Mean ± SEM Range of Values

Age (yrs) 36 ± 4 21–58
Weight (kg) 67.7 ± 2.8 55.9–82.0
Height (cm) 166.8 ± 1.6 160.0–180.3

BMI (kg/m2) 23.3 ± 0.9 19.2–28.7
Triglycerides (mg/dL) 100.8 ± 16.6 38–198

Total cholesterol (mg/dL) 180.2 ± 13.6 112–267
LDL (mg/dL) 108.6 ± 13.2 54–183
HDL (mg/dL) 58.2 ± 3.75 41–83

VLDL (mg/dL) 17.9 ± 2.9 7–33
Hemoglobin (g/dL) 14.4 ± 0.5 12.3–16.3
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3.2. Glucose and Insulin Responses

Timepoint differences in glucose concentrations were significantly lower at 60 and 90 min
postprandial for black beans and rice (p = 0.026 and p = 0.001, respectively), and chickpeas and
rice (p = 0.024 and p = 0.012, respectively) as compared with the white rice control meal. A significant
reduction in postprandial glucose concentrations was also observed for the black bean and rice meal at
the 120 min timepoint (p = 0.024). The glucose response to chickpeas and rice trended lower (p = 0.072)
than the control meal at 120 min postprandial (Figure 1). Blood glucose iAUC values between 0 and
120 min were significantly different between treatments at the main effect level (p = 0.027; Figure 2).
Tukey post hoc tests indicated a significant difference between the rice-only control and the chickpeas
and rice meal (p = 0.047) and a trending difference between the rice-only control and the black beans
and rice meal (p = 0.058)
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Table 2. Descriptive characteristics of women at study entry (n = 12).

Characteristic Mean ± SEM Range of Values
Age (yrs) 36 ± 4 21–58
Weight (kg) 67.7 ± 2.8 55.9–82.0
Height (cm) 166.8 ± 1.6 160.0–180.3
BMI (kg/m2) 23.3 ± 0.9 19.2–28.7

Triglycerides (mg/dL) 100.8 ± 16.6 38–198
Total cholesterol (mg/dL) 180.2 ± 13.6 112–267

LDL (mg/dL) 108.6 ± 13.2 54–183
HDL (mg/dL) 58.2 ± 3.75 41–83
VLDL (mg/dL) 17.9 ± 2.9 7–33

Hemoglobin (g/dL) 14.4 ± 0.5 12.3–16.3

3.2. Glucose and Insulin Responses

Timepoint differences in glucose concentrations were significantly lower at 60 and 90 min
postprandial for black beans and rice (p = 0.026 and p = 0.001, respectively), and chickpeas and rice
(p = 0.024 and p = 0.012, respectively) as compared with the white rice control meal. A significant
reduction in postprandial glucose concentrations was also observed for the black bean and rice
meal at the 120 min timepoint (p = 0.024). The glucose response to chickpeas and rice trended lower
(p = 0.072) than the control meal at 120 min postprandial (Figure 1). Blood glucose iAUC values
between 0 and 120 min were significantly different between treatments at the main effect level
(p = 0.027; Figure 2). Tukey post hoc tests indicated a significant difference between the rice-only
control and the chickpeas and rice meal (p = 0.047) and a trending difference between the rice-only
control and the black beans and rice meal (p = 0.058)

Figure 3. One-way Analysis of Variance of glucose iAUC was significantly different by treatment
(p = 0.027). Tukey post-hoc tests indicated a significant difference between chickpeas and control
(p = 0.047), and a trend was observed between black beans and control (p = 0.058). * p <0.05. Bars
denote mean insulin iAUC values and error bars denote standard error of means.

Timepoint differences in insulin concentrations were significantly higher at 30 min
postprandial for the black beans and rice (p = 0.037) and chickpeas and rice (p = 0.026) than for the
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Figure 3. One-way Analysis of Variance of glucose iAUC was significantly different by treatment
(p = 0.027). Tukey post-hoc tests indicated a significant difference between chickpeas and control
(p = 0.047), and a trend was observed between black beans and control (p = 0.058). * p < 0.05. Bars
denote mean insulin iAUC values and error bars denote standard error of means.
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white rice control meal (Figure 3). Blood insulin iAUC values assessed between 0 and 120 min
postprandial were not significantly different between treatments (p > 0.05; Figure 4).

Figure 4. Insulin iAUC was not significantly different by treatment (p>0.05). Bars denote mean
insulin iAUC values and error bars denote standard error of means.

4. Discussion

Findings of this randomized, cross-over trial indicate that a half cup of whole black beans
and chickpeas in combination with white rice reduced glycemic response among adult women
without diagnosed diabetes compared to the rice-only control. The ability of black beans and
chickpeas to mitigate the high GI of rice is consistent with many, but not all, studies that have
explored the impact of whole dry beans on postprandial glucose and insulin when consumed with
a high GI food among healthy subjects and individuals with insulin resistance and type 2 diabetes
[4,32–40].

Black bean and rice and chickpea and rice meals decreased timepoint differences in glucose
concentrations at 60 and 90 min postprandial compared to white rice control, but only black beans
demonstrated a lower timepoint difference in glucose concentration at 120 min (Figure 1). Despite
standardization based on 50 g of available carbohydrate, the black beans and rice meal contained
slightly more fiber and protein compared to the chickpeas and rice meal. This difference, albeit
small, may have extended the glucose lowering impact of black beans to the 120-min timepoint. In a
project of similar study design, we observed that black, pinto, and dark red kidney beans showed
significant decreases in postprandial glucose in comparison to a rice control among adults with
type 2 diabetes [36].

The insulin incremental area under the curve (iAUC) did not significantly differ between
treatments (Figure 4), but was slightly higher for the two bean and rice treatments than for rice
alone. These increased values may have been driven by the difference in insulin concentrations for
the black beans and rice and chickpeas and rice at the 30 min timepoint (Figure 3). As no other
significant differences in insulin concentrations were observed at other timepoints, not only did the
impact of the black beans and chickpeas on insulin differ from their effect on glucose, the increase
in insulin they elicited at 30 min offers a possible explanation for the decreased glucose
concentrations at 60 and 90 min for both interventions. It is also reasonable to postulate that the
early increase in insulin served to move glucose out of the bloodstream and into the cells more
rapidly after consumption of black beans and rice or chickpeas and rice versus white rice alone.
Mixed responses in insulin AUC were observed among male and female participants with
overweight and obesity following an 8-week intervention involving five cups of yellow peas,

Figure 4. Insulin iAUC was not significantly different by treatment (p > 0.05). Bars denote mean insulin
iAUC values and error bars denote standard error of means.
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Timepoint differences in insulin concentrations were significantly higher at 30 min postprandial
for the black beans and rice (p = 0.037) and chickpeas and rice (p = 0.026) than for the white rice control
meal (Figure 3). Blood insulin iAUC values assessed between 0 and 120 min postprandial were not
significantly different between treatments (p > 0.05; Figure 4).

4. Discussion

Findings of this randomized, cross-over trial indicate that a half cup of whole black beans and
chickpeas in combination with white rice reduced glycemic response among adult women without
diagnosed diabetes compared to the rice-only control. The ability of black beans and chickpeas to
mitigate the high GI of rice is consistent with many, but not all, studies that have explored the impact
of whole dry beans on postprandial glucose and insulin when consumed with a high GI food among
healthy subjects and individuals with insulin resistance and type 2 diabetes [4,32–40].

Black bean and rice and chickpea and rice meals decreased timepoint differences in glucose
concentrations at 60 and 90 min postprandial compared to white rice control, but only black beans
demonstrated a lower timepoint difference in glucose concentration at 120 min (Figure 1). Despite
standardization based on 50 g of available carbohydrate, the black beans and rice meal contained
slightly more fiber and protein compared to the chickpeas and rice meal. This difference, albeit
small, may have extended the glucose lowering impact of black beans to the 120-min timepoint.
In a project of similar study design, we observed that black, pinto, and dark red kidney beans showed
significant decreases in postprandial glucose in comparison to a rice control among adults with type 2
diabetes [36].

The insulin incremental area under the curve (iAUC) did not significantly differ between
treatments (Figure 4), but was slightly higher for the two bean and rice treatments than for rice
alone. These increased values may have been driven by the difference in insulin concentrations for the
black beans and rice and chickpeas and rice at the 30 min timepoint (Figure 3). As no other significant
differences in insulin concentrations were observed at other timepoints, not only did the impact of
the black beans and chickpeas on insulin differ from their effect on glucose, the increase in insulin
they elicited at 30 min offers a possible explanation for the decreased glucose concentrations at 60
and 90 min for both interventions. It is also reasonable to postulate that the early increase in insulin
served to move glucose out of the bloodstream and into the cells more rapidly after consumption
of black beans and rice or chickpeas and rice versus white rice alone. Mixed responses in insulin
AUC were observed among male and female participants with overweight and obesity following an
8-week intervention involving five cups of yellow peas, chickpeas, navy beans, and lentils per week
in comparison to dietary counselling for energy restriction [51]. Like the present study, a significant
glucose AUC reduction was observed among all participants with the pulse treatment (20.1% vs. 5.6%),
but insulin AUC was reduced by 13.9% among female participants and increased by 27.3% among
men [53].

Black beans originated in South America, and are most frequently eaten in Latin American
and Caribbean cuisine. Chickpeas or garbanzo beans were originally cultivated in Europe, and are
most commonly consumed in the context of Middle Eastern and Indian dishes [1]. Retention of
legume consumption within traditional diets improves short term glycemia and insulinemia, and
reduces the risk of chronic conditions such as CHD and type 2 diabetes, evidence which encouraged
the current DGA recommendations in the US [23]. Importantly, our findings indicate that even a
1/2 cup of beans can produce reductions in postprandial glycemia. Legumes contain a variety of
essential nutrients, and fall within multiple food group categories. Increased bean consumption
improves dietary fiber and plant protein consumption—two dietary components that are lacking in
US diets—and lower chronic disease risk [54]. As chronic disease incidence increases alongside the
rising prevalence of obesity [14], determining culturally relevant dietary factors that lower disease
risk is of high importance. Consumption of food combinations like black beans and rice, or chickpeas
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and rice, historically important components of traditional diets, often declines with acculturation to a
Western diet [20] and corresponds to an increase in obesity and type 2 diabetes [13].

Strengths of the present study include reductions in confounding by study procedures and
the use of translatable quantities of bean treatments. As this study was conducted among healthy
individuals our study results may not have been impacted by chronic disease-related confounders.
The consumption of the same pre-treatment evening meal and the minimum one-week separation
between test days may have also lowered differences in glucose and insulin response due to the second
meal effect. A half cup of beans was provided to study participants during treatment days. This
quantity is likely more representative of actual per meal consumption and, given our results, indicates
that even modest increases in bean consumption can produce beneficial effects in an acute setting.
The translation of a bean and rice meal is an additional strength, as beans are rarely consumed in
isolation [1].

The limitations of the present study should be noted. This was an acute study which cannot
provide evidence of the long-term effects of bean intake. We relied on self-reported health status
during screening and assessed blood lipids and other biomarkers at the first testing visit. Thus, while
participants were considered healthy for the purposes of the present study, it is possible that unknown
or undisclosed health conditions impacted our findings. We also did not control for stage of menstrual
cycle during data collection. Some studies have suggested that minimal increases in blood glucose
may occur during the follicular and luteal phases of the menstrual cycle among normoglycemic
women [55,56]. As the present study used a cross-over design, and net glucose and insulin changes
were measured over each treatment day, we believe any potential differences due to menstrual cycle
were minimized by the methodology. However, it is possible that the observed differences could
be influenced by hormonal changes. Additionally, our findings cannot be generalized to men or to
individuals with chronic conditions such as type 2 diabetes, although we have previously observed
acute reductions in postprandial glycemia with bean and rice treatments among individuals with
type 2 diabetes [38].

Future research is warranted to evaluate the metabolic effects of bean consumption in a
traditional context among varied groups of human subjects, including those with chronic conditions.
The evaluation of additional metabolic outcomes such as inflammatory cytokines, microbial taxa
within the gastrointestinal tract and their related metabolites following bean intake would be added
strengths. Investigating the knowledge, attitudes, and practices regarding legume consumption
among immigrants and native born US individuals is vital for directing dietary guidance from
Registered Dietitian Nutritionists and other health providers to ensure they provide meaningful
and medically-relevant information to their clients [20].

5. Conclusions

Legumes are culturally meaningful foods with numerous health benefits. In the present study,
whole black bean and chickpea consumption in combination with white rice, a high glycemic index
food, significantly reduced glycemic response in comparison to a white rice control among healthy
adult women. Bean treatments were provided in a quantity (1/2 cup) recommended by the 2015 Dietary
Guidelines for Americans. Findings have important implications for dietary guidance and retention of
traditional food combinations by immigrants, native born US individuals, and others globally.
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